On the difference between permutation polynomials over finite fields

نویسندگان

  • Nurdagül Anbar
  • Almasa Odz̆ak
  • Vandita Patel
  • Luciane Quoos
  • Anna Somoza
  • Alev Topuzoğlu
چکیده

The well-known Chowla and Zassenhaus conjecture, proven by Cohen in 1990, states that if p > (d2 − 3d+ 4)2, then there is no complete mapping polynomial f in Fp[x] of degree d ≥ 2. For arbitrary finite fields Fq, a similar non-existence result is obtained recently by Işık, Topuzoğlu and Winterhof in terms of the Carlitz rank of f .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on permutation polynomials and finite geometries

Let F be a finite field of odd cardinality. A polynomial g in F[x] is called a permutation polynomial if g defines a bijective function on F. We will call a polynomial f in F[x] a difference permutation polynomial if f(x + a) -f(x) is a permutation polynomial for every nonzero a in F. Difference permutation polynomials are a special case of planar functions, as defined by Dembowski [2, p. 2271,...

متن کامل

Specific permutation polynomials over finite fields

We present new classes of permutation polynomials over finite fields. If q is the order of a finite field, some polynomials are of form xrf(x(q−1)/d), where d|(q − 1). Other permutation polynomials are related with the trace function. 2000 Mathematics Subject Classification: Primary 11T06.

متن کامل

Reversed Dickson polynomials over finite fields

Reversed Dickson polynomials over finite fields are obtained from Dickson polynomials Dn(x, a) over finite fields by reversing the roles of the indeterminate x and the parameter a. We study reversed Dickson polynomials with emphasis on their permutational properties over finite fields. We show that reversed Dickson permutation polynomials (RDPPs) are closely related to almost perfect nonlinear ...

متن کامل

New classes of permutation binomials and permutation trinomials over finite fields

Permutation polynomials over finite fields play important roles in finite fields theory. They also have wide applications in many areas of science and engineering such as coding theory, cryptography, combinational design, communication theory and so on. Permutation binomials and trinomials attract people’s interest due to their simple algebraic form and additional extraordinary properties. In t...

متن کامل

Several Classes of Permutation Polynomials over Finite Fields

Several classes of permutation polynomials of the form ( ) ( ) k p t x x + δ + L x − over finite fields are presented in this paper, which is a further investigation on a recent work of Li et al.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017